

November 2007

First Assessment

Mathematics Extension

General Instructions

- Reading Time 5 Minutes
- Working time 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used.
- All necessary working should be shown in every question

Total Marks - 60

- All Questions may be attempted
- Each Question is worth 15 marks, and should be handed up in a separate examination Booklet.
- Full Marks may not be awarded for careless or poorly set out work.

Examiner – A.M.Gainford

(Blank Page)

Question 1. (15 Marks) (Start a new booklet.)

Marks

4

- (i) In how many ways may all the letters of the word ANAGRAM be arranged 2 in a line?
 - (ii) In how many ways may four men and four women be arranged around a circular table, if no two men are to be seated next to each other?
- (b) The point P(8, -16) divides the interval *AB* externally in the ratio 2:1. Find the coordinates of the point *B* given that *A* is (-2, 6).
- (c) Solve the following inequalities, and in each case graph the solution on the number **6** line:

(i)
$$\frac{2}{x} > \frac{1}{3}$$

(a)

(ii)
$$\frac{x}{x-1} \le 2$$

- (d) Consider the equation $3\sin\theta + 4\cos\theta = 2$.
 - (i) Express the equation in the form $R\sin(\theta + \alpha) = 2$, where *R* is a constant, and α is constant and acute.
 - (ii) Hence or otherwise solve the equation for $0^{\circ} \le \theta \le 360^{\circ}$, correct to the nearest minute.

SHS Year 11 Ext Assessment Nov 2007 Page 3

Question 2. (15 Marks) (Start a new booklet.)

Page 4

SHS Year 11 Ext Assessment Nov 2007

(a) Solve the following equation for $0^{\circ} \le \theta \le 360^{\circ}$:

$$6\cos^2\theta = 4 + \sin\theta$$
.

Give your answers correct to the nearest minute.

(b) Given the polynomial
$$P(x) = 2x^3 - 6x^2 - 12x + 16$$
:

- (i) Use the factor theorem to determine a zero of the polynomial.
- (ii) Express P(x) as a product of linear factors.
- (c) Show that:

$$2\sec\theta\left(\sec\theta - \tan\theta\right) - 1 = \frac{1 - \sin\theta}{1 + \sin\theta}$$

- (d) Find the acute angle between the lines x+2y-6=0 and 3x-2y+7=0, correct to **3** the nearest minute.
- (e) Write in polynomial form the equation of the monic quartic with a double root at x = 2, and simple roots at x = 0 and x = -3.
- (f) When a certain polynomial is divided by (x+2)(x-3) the remainder is 2x+3. 2 What are the remainders when it is divided by x+2 and x-3 separately?

Marks

2

4

2

Question 3. (15 Marks) (Start a new booklet.)

3 (a) Solve the equation $x^4 + 4x^3 - 16x - 16 = 0$ by factorization, or otherwise. (b) From a point A on the ground due South of the base G of a television tower, the 4 angle of elevation of the top (T) of the tower is $16^{\circ}42'$. One kilometre East of A, at the point *B*, the angle of elevation of the top of the tower is 12° . (i) Draw a neat diagram representing this situation. (ii) Find the height of the tower to the nearest metre. (c) 4 P is a point on the parabola $x^2 = 4ay$ and G is the point where the normal at P intersects the axis of the parabola. If the line through P perpendicular to the axis of the parabola meets the axis at *N*, then the interval *NG* is called the subnormal corresponding to P. Show that the point $P(2ap, ap^2)$ lies on the parabola for all values of p. (i) (ii) Derive the equation of the normal at *P*. Prove that the length of the subnormal corresponding to P is constant, and (iii) equal to twice the focal length. (d) Solve the inequality |2x-1| > |x+2|. 2

(e) Find the general solution of the equation $\cos\theta\sin\theta = \frac{1}{2}$.

- (i) How many arrangements are possible?
- (ii) What is the probability that person *A* and person *B* are separated by exactly one other person?
- (b) *P* is a variable point on the parabola $x^2 = 4ay$. The tangent at *P* meets the *x*-axis at *Q* and the *y*-axis at *R*. Determine the Cartesian equation of the locus of *M*, the midpoint of *QR* as *P* moves on the parabola.
- (c) The ropes of a swing are 4m long and at rest the seat is 0.6 m above the ground. A child uses the swing, and the highest point reached on one side is 2m, and on the other side is 2.3 m above the ground.
 - (i) Calculate, to the nearest degree, the angle through which the seat swings.
 - (ii) Find, to the nearest centimetre the straight line distance between the two highest points.
- (d) (i) Find an expression for $\tan(\alpha + \beta + \gamma)$ in terms of $\tan \alpha$, $\tan \beta$, $\tan \gamma$.
 - (ii) Put $\alpha = \beta = \gamma = \frac{\pi}{12}$ in the expression derived above, and show that $\tan \frac{\pi}{12}$ is a root of the equation $t^3 3t^2 3t + 1 = 0$.

This is the end of the paper.

3

4

2007 Mathematics Extension 1 Assessment 1: Solutions Question 1

1. (a) (i) In how many ways can the letters of the word ANAGRAM be arranged in a line?

Solution: $\frac{7!}{3!} = \frac{5040}{6},$ = 840.

(ii) In how many ways can four men and four women be arranged around a circular table, if no two men are to be seated next to each other?

Solution: 3!4! = 144.

- (b) The point P(8, -16) divides the interval AB externally in the ratio 2 : 1. Find the coordinates of the point B given that A is (-2, 6).
 - Solution: $8 = \frac{(-1) \times (-2) + 2 \times x}{-1+2}, \quad -16 = \frac{(-1) \times 6 + 2 \times y}{-1+2}, \\
 = 2 + 2x, \quad = -6 + 2y, \\
 \therefore x = 3. \quad y = -5. \\
 i.e. B(3, -5). \quad y = -5.$
- (c) Solve the following inequalities, and in each case graph the solution on the number line: 2 1

(i)
$$\frac{x}{x} > \frac{1}{3}$$

Solution: Clearly $x > 0$ (as $\frac{1}{3} > 0$), $\therefore 6 > x$,
i.e. $0 < x < 6$.
 $-2 -1 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8$
(ii) $\frac{x}{x-1} \le 2$
Solution: If $x - 1 > 0$, $x > 1$; if $x - 1 < 0$, $x < 1$;
then $x \le 2x - 2$, then $x \ge 2x - 2$,
 $x \ge 2$.
 $\therefore x \ge 2$.
 $\therefore x \ge 2$.
 $\therefore x < 1$.
Alternative Solution: $x(x - 1) \le 2(x - 1)^2$,
 $(x - 1)(x - 2x + 2) \le 0$,
 $(x - 1)(2 - x) \le 0$.
Number line graph as above.
(i) $\frac{1}{x}$

1

3

1

- (d) Consider the equation $3\sin\theta + 4\cos\theta = 2$.
 - (i) Express the equation in the form $R\sin(\theta + \alpha) = 2$, where R is a constant, and α is constant and acute.

Solution: $R = \sqrt{3^2 + 4^2}$, $\tan \alpha = \frac{4}{3}$, = 5. $\alpha \approx 53.130102354^\circ$. *i.e.* $5\sin(\theta + \tan^{-1}(\frac{4}{3}) = 2$.

(ii) Hence or otherwise solve the equation for $0^{\circ} \le \theta \le 360^{\circ}$, correct to the nearest minute.

 2

 $\boxed{2}$

2)a)
$$6_{1}\cos^{2}\Theta = 4 + \sin\Theta$$

 $6(1 - \sin^{2}\Theta) = 4 + \sin\Theta$
 $6 - 6\sin^{2}\Theta = 4 + \sin\Theta$
 $6 - 6\sin^{2}\Theta = 4 + \sin\Theta$
 $6 - 6\sin^{2}\Theta = 4 + \sin\Theta$
 $(6\sin^{2}\Theta + sin^{2}\Theta - 2 = 0)$ $+ \frac{1}{4} + \frac{1}{4}$
 $(6\sin^{2}\Theta + 4)(6\sin^{2}\Theta - 3) = 0$
 $\sin^{2}\Theta = \frac{1}{2}$ $\sin^{2}\Theta = \frac{1}{2}$
 $(3\sin^{2}\Theta + 2)(2\sin^{2}\Theta - 1) = 0$
 $\sin^{2}\Theta = \frac{1}{2}$ $\sin^{2}\Theta = \frac{1}{2}$
 $x = \frac{1}{4}$ $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$
 $\sin^{2}\Theta = \frac{1}{2}$ $\sin^{2}\Theta = \frac{1}{2}$
 $x = 41^{2}49^{2}$ $x = 30^{2}$
 $\theta = 30^{2}, 150^{2}, 221^{2}44^{2}, 318^{2}11^{2}$
b) i) $P(x) = 2x^{3} - 6x^{2} - 12x + 16$
 $P(1) = 2(1)^{3} - 6(1)^{2} - 12(1) + 16$
 $= 0$
 $x = 1$ $is = 6 - factor$
 $i)$ $x = 1$ $is = 6 - factor$
 $2x^{2} - 4x - 16$
 $x = 1, 2x^{2} - 6x^{2} - 12x + 16$
 $-16x + 16$
 $P(x) = 2(x - 1)(x^{2} - 2x - 8)$ $+ \frac{1}{2}\frac{x^{2}}{-52}$

P(x) = 2(x-1)(x+2)(x-4)LHS = 2 sec O (sec O - tan O) - 1 د) $= \frac{2}{\cos \theta} \left(\frac{1}{\cos \theta} - \frac{\sin \theta}{\cos \theta} \right) - 1$ $\frac{2(1-sih0)}{\cos^20}$ $= \frac{2(1-siho)}{1-sih^2O} - 1$ $= 2(1-sin\theta)$ (1-siho)(1+siho) $= \frac{2}{1+siho} - 1$ $= \frac{2 - (1 + sih Q)}{1 + sih Q}$ $= \frac{1 - shQ}{1 + shQ}$ = RHS $2 \sec O \left(\sec O - \tan O \right) - 1 = \frac{1 - \sin O}{1 + \sinh O}$ 3x - 2y + 7 = 02y = 3x + 7 $y = \frac{3}{2}x + \frac{7}{2}$ x+2y-6=0 d) 2y=- x+6 $y = -\frac{x}{2} + 3$ m,=-5 $M_2 = \frac{3}{2}$ $tan O = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$

 $fan Q = \left(\frac{-\frac{1}{2}}{1 + (-\frac{1}{2})(\frac{3}{2})} \right)$ fan 0 = [-8] tan 0 = 8 Ø=82°52' $(\pi - 2)^{2} \times (\pi + 3) = 0$ $(\pi^{2} - 4\pi + 4) (\pi^{2} + 3\pi) = 0$ $\pi^{4} - 4\pi^{3} + 4\pi^{2} + 3\pi^{3} - 12\pi^{2} + 12\pi = 0$ e) $\chi^4 - \chi^3 - 8 \chi^2 + 12\chi = 0$ P(x) = (x+2)(x-3)Q(x) + 2x+3f) P(-2) = 2(-2) + 3P(3) = 2(3) + 3". the remainders when P(se) is divided by x+2 and x-3 are -1 and 9 respectively.

(a)
$$x^{4} + 4x^{3} - 16x - 16 = 0.$$

 $x^{4} - 16 + 4x^{3} - 16x = 0$
 $(x^{2} - 4)(x^{2} + 4) + 4x(x^{2} + 4) = 0.$
 $(x^{2} - 4)(x^{2} + 4x + 4) = 0.$
 $(x - a)(x + a)(x + a)^{2} = 0.$
 $(x - a)(x + a)(x + a)^{2} = 0.$
 $(x - a)(x + a)^{2} = 0.$

 $b = h 7a 73^{0} 18^{t}$ $a = k tan 78^{0}.$ $a^{7} - b^{7} = 1.$ $\therefore h^{2} \left[tan^{2} 78^{0} - tan^{2} 73^{0} 18^{t} \right] = 1$ $h^{2} = \frac{1}{2a^{2} 78^{0} - tan^{2} 73^{0} 18^{t}}.$ $h = \frac{1}{\sqrt{tan^{2} 78^{0} - tan^{2} 73^{0} 8^{t}}}.$ $h = \frac{1}{\sqrt{tan^{2} 78^{0} - tan^{2} 73^{0} 8^{t}}}.$

-x=4ay. G - P(2ap, ap') Η $(11) \quad y = \frac{1}{4a} x^{2}$ $(1) x^2 = (2ap)^2$ $= 4a^{r}p^{r}$ y' = 1 x. = 4 a (a p r) - '.x" = 4ay. ·. m = 1. 2a.p. of (2ap, apr) =p. lieson ($\therefore m_{\rm N} = -1$ $\rightarrow p$. x=+ay. N: $y-ap^2=-L(x-2ap)$ $p_{y}-ap^{3} = -x + aap.$ $\left[x + p_{y} = ap + ap^{3}\right]$ Histeppint (0, apr) (11) & G is the paint (0, 2a+apr) . . NG = 2a. There The subsparal NG is independent of P and equal to twice the Ascal length.

QUESTION 1) (2) 4 (a) (i) 5! = 120 AC=4ways AE = 2.6 4 4 (ii`) $\frac{3\times2\times3!}{5!} = \frac{3}{10}$ (<u>n</u> F 12 (b)4 90-0 0.6 ρ(2ap, ap²) 1) In A ADF $\cos 2\alpha = \frac{2 \cdot 3}{4}$ $2\alpha = 54^{\circ}54'1.32'$ $\cos 20 = \frac{2.6}{4}$ Eq" taugent at P IN & AEB $y - px + ap^2 = 0$ \bigcirc $20 = 49^{\circ}27'30.23''$ When x=0, $y=-ap^2$ $\Rightarrow R(0,-ap^2)$ $\left(\frac{1}{2}\right)$ (ù) When y=0, x=ap $(BD) = 4 + 4 - 2.4.4 \cos 104^{\circ}$ $\ni Q(ap, o)$ $\begin{pmatrix} 1 \\ - \end{pmatrix}$ $BD \doteq 6.3m$ $M\left(\frac{ap}{2}, -\frac{ap^2}{2}\right)$ ie 630cm let $x = \frac{ap}{2}$, $y = -\frac{ap^2}{2}$ $p = \frac{2\alpha}{a}, y = -\frac{\alpha}{2} \left(\frac{2x}{a}\right)^{2}$ locus $y = -\frac{2z^2}{z}$ (12)

(d)
(i)
$$\tan(\alpha + \beta + \gamma) = \tan\left[(\alpha + \beta) + \gamma\right]$$

$$= \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} + \tan \gamma$$

$$= \frac{1 - \tan \alpha \tan \beta}{1 - \tan \alpha \tan \beta}$$
(ii) $\tan \gamma$
(iii) $\tan(\alpha + \beta + \gamma) = \frac{\tan(\alpha + \tan \beta)}{1 - \tan \alpha \tan \beta}$, $\tan \gamma$
(iii) $\tan \gamma$
(iii

(ii)
$$\alpha = \beta = \gamma = \frac{\pi}{12}$$
 substin (*)
 $\Rightarrow \tan \frac{\pi}{4} = 1$... (*) \Rightarrow (2)
 $1 - \tan \frac{\pi}{4} = 1$... (*) \Rightarrow (2)
 $1 - \tan \frac{\pi}{4} = 1$... (*) \Rightarrow (2)
 $1 - \tan \frac{\pi}{4} = 1$ $\tan \frac{\pi}{4} = 1$ $\tan \frac{\pi}{4} = 1$ $\tan \frac{\pi}{4} = 1$ $\tan \frac{\pi}{12} = 1$ $\tan \frac{\pi}{$

.<u>.</u>